Участник:Pyatakovns/Ро-алгоритм Полларда
Версия от 16:59, 12 октября 2020; Pyatakovns (обсуждение | вклад) (Новая страница: «Автор: Пятаков Н.С. 419 группа == Свойства и структура алгоритмов == === Общее описание алгор...»)
Автор: Пятаков Н.С. 419 группа
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Ро-алгоритм Полларда[1] предназначен для решения задачи факторизации целых чисел. Этот метод был разработан Джоном Поллардом в 1975 г. Данный алгоритм основывается на следствиях из парадокса дней рождения и алгоритме Флойда поиска длины цикла в последовательности.
1.2 Математическое описание алгоритма
Пусть n – число, которое следует разложить. ρ-метод Полларда работает следующим образом:
1. Выбираем небольшое число [math]x_0[/math] и строим последовательность чисел [math]{x_n}, n = 0, 1, 2, ...,[/math] определяя каждое следующее [math]x_{n+1}[/math] по формуле [math]x_{n+1} =(x_{2n} −1)(modn)[/math].
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- ↑ Pollard J. M. A Monte Carlo method for factorization // BIT. 1975. V. 15. P. 331—334.