Участница:Полина Кривуля/Сеть битонной сортировки
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Битонная сортировка – это параллельный алгоритм сортировки, основанный на битонной последовательности. Алгоритм разработан американским информатиком Кеннетом Бэтчером в 1968 году и является одним из старейших параллельных алгоритмов сортировки. Наряду с четно-нечетной сортировкой слиянием, является одним из первых методов построения сортировочной сети для любого количества входов [1]. Публикация этого алгоритма, наряду с также предложенным Бэтчером алгоритмом сеть нечетно-четной перестановки, стимулировала развитие проектирования и анализа параллельных алгоритмов в общем и параллельной сортировки в частности.
Битонной последовательностью называют последовательность, которая монотонно не убывает, а затем монотонно не возрастает, либо приводится к такому виду в результате циклического сдвига. Пример такой последовательности – {8, 10, 16, 12, 4, -2, -8} [2]. Любая последовательность, входящая в битонную, любая последовательность состоящая из одного или двух элементов, а также любая монотонная последовательность также является битонной. Например, последовательности {3,5,10,4,1}, {1,5}, {10,14,5,-1,-4} являются битонными, а {4,6,1,9,2} не является. Каждое множество неотсортированных элементов можно считать множеством битонных последовательностей, состоящих из двух элементов. Процесс битонного слияния преобразует битонную последовательность в полностью отсортированную последовательность. Алгоритм битонной сортировки состоит из применения битонных преобразований до тех пор, пока множество не будет полностью отсортировано [3].
Время работы алгоритма составляет [math] O(log^2(n))[/math].
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Масштабируемость алгоритма и его реализации
2.4 Динамические характеристики и эффективность реализации алгоритма
2.5 Выводы для классов архитектур
2.6 Существующие реализации алгоритма
3 Литература
- ↑ Википедия: Битонная сортировка
- ↑ Дальневосточный Федеральный университет: Занятие 10. Программирование на CUDA. Часть 6.
- ↑ Selim G. Akl. Bitonic Sort (англ.) // Encyclopedia of Parallel Computing : энциклопедия. — Springer, 2011. — P. 139-146. — ISBN 978-0-387-09765-7.