Участник:Khotkin/Построение матрицы Адамара произвольного размера
Всем привет! Здесь Кирилл Хоткин и Михаил Царев делают задание по суперкомпьютерам.
Сюда тоже запилим | |
Последовательный алгоритм | |
Последовательная сложность | O(n^3) |
Объём входных данных | \frac{n (n + 1)}{2} |
Объём выходных данных | \frac{n (n + 1)}{2} |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | O(n) |
Ширина ярусно-параллельной формы | O(n^2) |
Основные авторы описания: А.В.Фролов, Вад.В.Воеводин (раздел 2.2), А.М.Теплов (разделы 2.4, 2.5)
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Матрица Адамара H порядка n представляет собой матрицу размера n×n из элементов +1 и -1, такую, что: H \cdot H^T = n \cdot E_n, где E_n — это единичная матрица размера n×n.
Матрицы Адамара находят широкое применение в теории кодирования (коды, исправляющие ошибки), теории планирования многофакторных экспериментов (ортогональные блок-схемы), квантовой информатике и прочих областях.
Матрица Адамара остаётся матрицей Адамара при следующих преобразованиях:
- умножение строчки или столбца на −1;
- перестановка строчек или столбцов местами.
Матрицы Адамара, получаемые друг из друга многократным применением указанных выше преобразований называются эквивалентными.
Матрица Адамара называется нормализованной, если её первая строка и столбец состоят только из единиц.
Под матрицией Адамара H_m подразумевается матрица порядка 2^m
Примерами матриц Адамара различных размеров являются следующие матрицы:
H_0 = (1);
H_1 = \begin{pmatrix} 1 & 1 \\1 & -1 \end{pmatrix};
H_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\1 & -1 & 1 & -1 \\1 & 1 &- 1 & -1 \\1 & -1 & -1 & 1 \end{pmatrix}.
Вообще, если H_m матрица Адамара порядка 2^m, то матрица H_{m+1} = \begin{pmatrix} H_m & H_m \\H_m & -H_m \end{pmatrix}; является матрицей Адамара порядка 2^{m+1}