Алгоритм проталкивания предпотока
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм проталкивания предпотока[1] (англ. Push-Relabel Method, или Preflow-Push Method) предназначен для решения задачи о максимальном потоке в транспортной сети. Время работы алгоритма [math]O(mn \ln n)[/math] (при использовании динамических деревьев Тарьяна-Слитора[2][3]).
1.2 Математическое описание
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
Алгоритм основан на локальных операциях и допускает распараллеливание, в том числе на распределённых системах[4]. Распределение вершин графа по процессорам может производиться на основе результатов предварительного поиска в ширину от вершины-источника потока, так чтобы на каждом процессоре обрабатывалось примерно одинаковое количество вершин одного и того же расстояния от источника.
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
push_relabel_max_flow
), сложность [math]O(n^3)[/math]. - Python: NetworkX (функция
preflow_push
): алгоритм highest-label preflow-push, сложность [math]O(n^2\sqrt{m})[/math].
3 Литература
- ↑ Goldberg, Andrew V, and Robert Endre Tarjan. “A New Approach to the Maximum-Flow Problem.” Journal of the ACM 35, no. 4 (October 1988): 921–40. doi:10.1145/48014.61051.
- ↑ Sleator, Daniel D, and Robert Endre Tarjan. “A Data Structure for Dynamic Trees,” STOC'81, 114–22, New York, USA: ACM Press, 1981. doi:10.1145/800076.802464.
- ↑ Sleator, Daniel Dominic, and Robert Endre Tarjan. “Self-Adjusting Binary Search Trees.” Journal of the ACM 32, no. 3 (July 1985): 652–86. doi:10.1145/3828.3835.
- ↑ Jiang, Jincheng, and Lixin Wu. “A MPI Parallel Algorithm for the Maximum Flow Problem ,” Geocomputation 2013.