Алгоритм Крускала
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм Крускала[1] предназначен для решения задачи о построении минимального остовного дерева во взвешенном неориентированном графе. Последовательная сложность алгоритма [math]O(m \ln n)[/math].
В отличие от алгоритмов Прима и Борувки, алгоритм Крускала не требует информации о рёбрах конкретной вершины, вместо этого на его вход подаётся общий список рёбер графа в произвольном порядке. Кроме этого, каждое (ненаправленное) ребро достаточно представить лишь одной из его направленных дуг, что на практике означает в два раза меньший объём вычислений. Последовательная версия алгоритма Крускала работает, как правило, быстрее последовательной версии алгоритма Борувки, а при условии предварительной сортировки списка рёбер по весу сложность алгоритма снижается до [math]O(m \alpha(m, n))[/math].
1.2 Математическое описание
Пусть задан связный неориентированный граф [math]G = (V, E)[/math] с весами рёбер [math]f(e)[/math]. Предполагается, что веса всех рёбер различны (если это не так, то можно упорядочить рёбра сначала по весу, а потом по номеру).
Алгоритм Крускала основан на следующих двух свойствах задачи:
- Минимальное ребро графа. Если [math]e^*[/math] – единственное ребро графа с минимальным весом, то оно принадлежит минимальному остовному дереву..
- Схлопывание фрагментов. Пусть [math]F[/math] – фрагмент минимального остовного дерева графа [math]G[/math], а граф [math]G'[/math] получен из [math]G[/math] склеиванием вершин, принадлежащих [math]F[/math]. Тогда объединение [math]F[/math] и минимального остовного дерева графа [math]G'[/math] даёт минимальное остовное дерево исходного графа [math]G[/math].
В начале работы алгоритма каждая вершина графа [math]G[/math] является отдельным фрагментом. На каждом шаге из рёбер, ещё не рассмотренных на предыдущих шагах, выбирается ребро с минимальным весом. Если оно соединяет два различных фрагмента, то оно добавляется в минимальное опорное дерево, а фрагменты склеиваются. В противном случае это ребро отбрасывается.
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Время работы алгоритма складывается из сортировки рёбер и поддержания информации о фрагментах. В базовом варианте рёбра вначале сортируются за время [math]m \ln n[/math] (например, с помощью быстрой сортировки), затем просматриваются в порядке увеличения веса за время [math]O(m)[/math], при этом для хранения информации о текущих фрагментах используется система непересекающихся множеств[2] с общим временем работы [math]O(m \alpha(m, n))[/math]. Итоговая сложность алгоритма [math]O(m \ln n)[/math].
Как видно, наибольшую сложность имеет этап сортировки, при этом большая часть рёбер сортируется напрасно: они всё равно будут отброшены, как принадлежащие одному фрагменту. Использование инкрементальной быстрой сортировки[3] (англ. IQS: Incremental Quick Sort) позволяет снизить затраты на сортировку, так что среднее время работы алгоритма составляет [math]O(m + n \ln^2 n)[/math].
В случае, если рёбра графа изначально отсортированы по весу рёбер, сложность алгоритма снижается до [math]O(m \alpha(m, n))[/math].
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
kruskal_min_spanning_tree
), сложность [math]O(m \ln m)[/math]. - C++, MPI: Parallel Boost Graph Library
- функция
merge_local_minimum_spanning_trees
реализует алгоритм Крускала; - функции
dense_boruvka_minimum_spanning_tree
,boruvka_then_merge
,boruvka_mixed_merge
сочетают алгоритм Борувки и алгоритм Крускала.
- функция
- Python: NetworkX (функция
minimum_spanning_tree
). - Java: JGraphT (класс
KruskalMinimumSpanningTree
).
3 Литература
- ↑ Kruskal, Joseph B. “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem.” Proceedings of the American Mathematical Society 7, no. 1 (January 1956): 48–50. doi:10.1090/S0002-9939-1956-0078686-7.
- ↑ Tarjan, Robert Endre. “Efficiency of a Good but Not Linear Set Union Algorithm.” Journal of the ACM 22, no. 2 (April 1975): 215–25. doi:10.1145/321879.321884.
- ↑ Navarro, Gonzalo, and Rodrigo Paredes. “On Sorting, Heaps, and Minimum Spanning Trees.” Algorithmica 57, no. 4 (March 23, 2010): 585–620. doi:10.1007/s00453-010-9400-6.