Участник:Stanis-morozov/Алгоритм Тренча вычисления спектра симметрической теплицевой матрицы
Задача нахождения собственных значений и собственных векторов для матрицы [math]A[/math] заключается в поиске таких соответствующих друг другу чисел [math]\lambda[/math] и ненулевых векторов [math]x[/math], которые удовлетворяют уравнению [math]Ax=\lambda x[/math]. Числа [math]\lambda[/math] называются собственными значениями, а вектора [math]x[/math] - соответствующими им собственными векторами[1]
Теплицевой матрицей называется матрица, в которой на всех диагоналях, параллельных главной, стоят равные элементы.[2]
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Задача эффективного вычисления собственных значений матриц является одной из основных задач линейной алгебры. Известно, что собственные значения произвольной матрицы невозможно вычислить за конечное число операций, однако существует множество итерационных методов, позволяющих решать эту задачу, например, QR-алгоритм. Однако, для некоторых специальных классов матриц можно предложить более эффективные методы, чем QR-алгоритм. Так, в 1989 была опубликована работа В. Тренча [3], в которой был предложен метод вычисления собственных значений симметрической теплицевой матрицы, учитывающий особенности структуры таких матриц, и допускающий эффективную параллельную реализацию [4].
2 Литература
- ↑ Е.Е. Тыртышников Основы алгебры. М.: Физматлит, 2017.
- ↑ Е.Е. Тыртышников Методы численного анализа. М.: Издательский центр "Академия", 2007, 320 с.
- ↑ Trench, W. F. (1989). Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices. SIAM J. Matrix Anal. Appl., 10(2): 135-146
- ↑ Trench, W. F. (1989). Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices. SIAM J. Matrix Anal. Appl., 10(2): 135-146