Уровень реализации

BiCGStab, HYPRE

Материал из Алговики
Версия от 12:06, 14 июля 2022; ASA (обсуждение | вклад) (→‎Литература =)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к навигации Перейти к поиску


Основные авторы описания: А.Новиков (раздел 3).

1 Ссылки

Параллельная реализация алгоритма в бесплатной библиотеке, поддерживающей MPI и OpenMP, HYPRE: Официальная страница Исходный код.

2 Локальность данных и вычислений

2.1 Локальность реализации алгоритма

2.1.1 Структура обращений в память и качественная оценка локальности

2.1.2 Количественная оценка локальности

3 Масштабируемость алгоритма и его реализации

3.1 Масштабируемость алгоритма

3.2 Масштабируемость реализации алгоритма

Исследование масштабируемости реализации стабилизированного метода бисопряженных градиентов проводилось согласно методике на суперкомпьютере "Ломоносов"[1] Суперкомпьютерного комплекса Московского университета.

Набор и границы значений изменяемых параметров запуска реализации алгоритма:

  • число процессоров [2 : 16] с шагом 1;
  • размер матрицы [262144 : 11239424].

В результате проведённых экспериментов был получен следующий диапазон эффективности реализации алгоритма:

  • минимальная эффективность реализации 60,00%;
  • максимальная эффективность реализации 98,33%.

На следующих рисунках приведены графики производительности и эффективности выбранной реализации стабилизированного метода бисопряженных градиентов в зависимости от изменяемых параметров запуска.

Параллельная реализация стабилизированного метода бисопряженных градиентов. Изменение производительности в зависимости от числа процессоров и размера матрицы.
Параллельная реализация стабилизированного метода бисопряженных градиентов. Изменение эффективности в зависимости от числа процессоров и размера матрицы.

4 Динамические характеристики и эффективность реализации алгоритма

5 Результаты прогонов

6 Литература

  1. Воеводин Вл., Жуматий С., Соболев С., Антонов А., Брызгалов П., Никитенко Д., Стефанов К., Воеводин Вад. Практика суперкомпьютера «Ломоносов» // Открытые системы, 2012, N 7, С. 36-39.