Уровень алгоритма

Участник:Elijah/Нахождение собственных чисел квадратной матрицы методом QR разложения

Материал из Алговики
Перейти к навигации Перейти к поиску


Нахождение собственных чисел квадратной матрицы методом QR разложения
Последовательный алгоритм
Последовательная сложность [math]N * O(n^3)[/math]
Объём входных данных [math]n^2[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math] N * (12n - 15) [/math]
Ширина ярусно-параллельной формы [math] O(n^2) [/math]


Основные авторы описания: И.В.Афанасьев, В.А.Шишватов

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

//TODO

1.2 Математическое описание алгоритма

//TODO

1.3 Вычислительное ядро алгоритма

У базового QR алгоритма есть два вычислительных ядра:

  1. операция поиска QR разложения с использованием метода Гивенса
  2. матричное умножения полученных матриц

1.4 Макроструктура алгоритма

Как уже описано в описании ядра алгоритма, базовая версия QR-алгоритма на каждой итерации использует следующие алгоритмы:

  1. Метод Гивенса (вращений) QR-разложения квадратной матрицы
  2. Перемножение плотных неособенных матриц

1.5 Схема реализации последовательного алгоритма

Последовательная реализация простейшего алгоритма сострит из некоторого числа итераций.

На итерации [math] n [/math]:

  1. Для матрицы [math] A_{n} [/math] строится QR разложение любым доступным последовательным алгоритмом на матрицы [math] Q_{n} [/math] и [math] R_{n} [/math]
  2. Матрицы [math] R_{n} [/math] и [math] Q_{n} [/math] перемножаются, таким образом получается матрица [math] A_{n+1} = R_{n} * Q_{n} [/math] для следующей итерации [math] n + 1 [/math]

По окончании каждой итерации проверятся, приведена ли матрица к диагональной форме.


// TODO about heisenberg form and algorithm with shift

1.6 Последовательная сложность алгоритма

Рассчитаем последовательную сложность базового алгоритма. Пусть [math] A \in \mathbb{R}^{n \times n}[/math], и для приведения матрицы к диагональной форме необходимо произвести N итераций алгоритма.
На каждой итерации алгоритма производится QR разложение (сложностью [math] 2 * n^3 [/math]) и матричное умножение (сложностью [math] n^3 [/math]). Проверка того, имеет ли матрица диагональную форму, может быть проведена за [math] n^2 [/math] операций.
Таким образом итоговая сложность одной итерации составляет: [math] 3*n^3 + n^2 = O(n^3)[/math]
Общая сложность алгоритма при [math] N [/math] итерациях составляет [math] N * O(n^3) [/math]


// TODO about heisenberg complexity

1.7 Информационный граф

//TODO

1.8 Ресурс параллелизма алгоритма

Все итерации базового QR-алгоритма производятся последовательно, поэтому на верхнем уровне алгоритм чисто последователен.

Основной ресурс параллелизма представлен на нижнем уровне, при реализации различных операций, используемых в алгоритме, таких как QR разложение методом вращений и матричное умножение.

Параллельная сложность базового QR-алгоритма
Посчитаем параллельную сложность каждой операции по отдельности, а затем, по полученным данным, и всего алгоритма целиком:
Параллельная сложность QR разложения методом вращений составляет [math] 11n - 16 [/math], что показано в соответствующей статье, ссылку на которую можно найти в разделе макроструктуры.
Параллельная сложность матричного умножения составляет [math] n [/math], что так же показано в соответствующей статье.
Параллельная сложность проверки, является ли матрица диагональной, равна 1.
Таким образом параллельная сложность каждой итерации составляет [math] 12n - 15 [/math]. При N итерациях, которые необходимо производить последовательно, итоговая сложность базового алгоритма составляет [math] N * (12n - 15) [/math]

// TODO for Heisenberg

1.9 Входные и выходные данные алгоритма

Входные данные: плотная квадратная матрица [math]A[/math] (элементы [math]a_{ij}[/math]).

Объём входных данных: [math]n^2[/math].

Выходные данные: n вещественных собственных чисел [math] | l_{i} | [/math] матрицы [math]A[/math]

Объём выходных данных: [math]n[/math].

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности как для базового, так и для оптимизированного алгоритма, является квадратичным, что даёт хороший стимул для распараллеливания.

Вычислительная мощность, равная отношению числа операций [math] N * O(n^3) [/math] к суммарному объему входных и выходных данных [math] n^2 + n [/math], для каждой итерации линейна, а для всего алгоритма в целом равна [math] N*n [/math], что позволяет сделать вывод о том, что перемещение данных для обработки не играет важной роли в данном алгоритме.

Данный алгоритм недетерминирован, так как число итераций зависит от значений матрицы.

Вычислительная погрешность растет линейно, из-за использования метода вращений для QR разложения.


// TODO Сбалансированность и другие свойства из общего описания