Участник:Антон Тодуа/Partitioning Around Medoids (PAM): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 4: Строка 4:
  
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
 +
 +
Алгоритм PAM (Partitioning Around Medoids) был предложен.
  
 
Кластеризация – это процесс автоматического разбиения некоторого множества элементов на группы(кластеры) на основе степени их схожести.
 
Кластеризация – это процесс автоматического разбиения некоторого множества элементов на группы(кластеры) на основе степени их схожести.

Версия 00:15, 14 октября 2016

Основные авторы описания: Тодуа А.Р., Гусева Ю.В.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм PAM (Partitioning Around Medoids) был предложен.

Кластеризация – это процесс автоматического разбиения некоторого множества элементов на группы(кластеры) на основе степени их схожести. Для лучшего осознания, что такое кластер, рассмотрим пример.

Рисунок 1.

В этом небольшом наборе данных четко выделяются две различные группы объектов,а именно: {1, 2, 3} и (4, 5, 6}. Такие группы и называются кластерами, и обнаружить их является целью кластерного анализа.

Таким образом, у кластера можно выделить два признака

● внутренняя однородность;

● внешняя изолированность.

Для чего используется кластеризация?

● Группировка объектов

● Распознавание образов

● Выявление структуры данных

● Сжатие данных

Для чего используется кластеризация?

● классификация результатов поиска (nigma, yippy,quintura)

● автоматическое построение каталогов

● работа только с несколькими представителями кластеров

● сегментация изображений — компьютерная графика

● кластеризация документов, таблиц и др.данных

● выделение групп клиентов, покупателей,товаров для разработки отдельных стратегий

Очевидно, что спектр применений кластерного анализа очень широк: в археологии, медицине, психологии, химии, биологии, государственном управлении, филологии, антропологии, маркетинге, социологии и других дисциплинах.

По типу обработки данных можно выделить два класса методов кластерного анализа:

Иерархические методы:

Агломеративные методы AGNES (Agglomerative Nesting):

- CURE;

- ROCK;

- CHAMELEON и т.д.

Дивизимные методы DIANA (Divisive Analysis):

- BIRCH;

- MST и т.д.

Неиерархические методы.

Итеративные

- k-means

- k-medoids

- CLOPE

- LargeItem и т.д.

Самый распространённый вариант реализации [math]k[/math]-medoids называется PAM (Partitioning Around Medoids). Он представляет собой «жадный» алгоритм с очень неэффективной эвристикой. Данный метод был предложен Кауфманом в 1987 году.

Алгоритм начинается с выбора набора данных, состоящих из медоидов и остальных объектов. После выбора [math]k[/math] произвольных объектов в качестве медоидов, необходимо для каждой пары [math]{x_i}[/math] и [math]{m_k}[/math] вычислить значение [math]S({x_{i}}{m_{k}})[/math]. По ходу выполнения алгоритма происходит итеративная замена одного из медоидов [math]x_i[/math] одним из остальных объектов [math]m_k[/math], если посчитанное ранее значение [math]S[/math] меньше нуля. Процесс будет повторятся, пока медоиды не стабилизируются.

1.2 Математическое описание алгоритма

В качестве исходных данных алгоритм принимает:

  • Симметрическую матрицу [math]D[/math] порядка [math]N[/math] с нолями на главной диагонали для [math]N[/math] объектов кластеризации: [math]i[/math]-я строка матрицы [math]D[/math] определяется расстояние от [math]i[/math]-го объекта кластеризации до каждого из остальных объектов кластеризации
  • Число кластеров [math]K[/math], при этом: [math]K \lt N[/math]

Для заданных входных данных, алгоритм выбирает [math]K[/math] объектов - медоидов (medoids) из [math]N[/math] объектов кластеризации. Все медоиды относится к разных кластерам и являются их характерными представителями. Кластеры остальных объектов (не медоидов) совпадают с кластером ближайшего к ним медоида. Ближайший к [math]i[/math]-му объекту медоид будем коротко назвать медоидом [math]i[/math]-го объекта. Выбор медоидов осуществляется исходя из минимизации среднего расстояния (average dissimilarity) между объектами внутри одного кластера. От минимизации среднего расстояния можно перейти к минимизации суммы расстояний от объектов до их медоидов. Такой переход не повлияет на выбор медоидов, но позволит не накапливать ошибки округления, возникающие в результате операции деления. Стоит отметить, что в общем случае расстояние между объектами следует понимать как меру похожести (similarity) объектов.

Для дальнейшего описания алгоритма введём следующие обозначения:

  • [math]U[/math] – множество объектов кластеризации, не выбранных в качестве медоидов
  • [math]S[/math] – множество объектов кластеризации, выбранных в качестве медоидов
  • [math]C_{ij}[/math] – изменение расстояния от [math]j[/math]-го объекта до его медоида в результате выбора [math]i[/math]-го объекта в качестве медоида
  • [math]T_{ijh}[/math] – изменение расстояния от [math]j[/math]-го объекта до его медоида, в результате обмена [math]i[/math]-го медоида на [math]h[/math]-й объект

Под обменом [math]i[/math]-го медоида на [math]h[/math]-й объект будем понимать операцию, в результате которой [math]i[/math]-й медоид перестаёт быть медоидом, а [math]h[/math]-й объект выбирается в качестве медоида:

[math] \begin{align} S & = S - \{i\} + \{h\} \\ U & = U - \{h\} + \{i\} \end{align} [/math]

Перед выполнением алгоритма множество [math]U[/math]содержит все объекты кластеризации, а множество [math]S[/math] – пусто. Описание значений [math]C_{ij}[/math] и [math]T_{ijh}[/math] и способа их вычисления будет дано при описании макроструктуры алгоритма.

Выполнение алгоритма включает в себя подготовительную стадию BUILD и итерационную стадию SWAP.


Стадия BUILD предназначена для построения начального множества медоидов и состоит в последовательном выполнении следующих шагов:

1. Добавить в множество [math]S[/math] объект, сумма расстояний от которого до всех остальных объектов минимальна (самый центральный объект):

[math]S = S + \{ arg\min_{i \in U} \sum_{j \in U} d_{ij} \}[/math]

2. Выбрать ещё [math]K-1[/math] медоидов следующим образом

[math]S = S + \{ arg\max_{i \in U} \sum_{j \in U - \{i\}} C_{ij} \}[/math]


Стадия SWAP является итерационной, одна итерация состоит в попытке улучшить кластеризацию путём выполнения обмена. На каждой итерации выполняется операция [math]arg\min_{i \in S, h \in U} \sum_{j \in U - \{h\}} T_{ijh}[/math]. Если для найденной пары [math]i \in S[/math] и [math]h \in U[/math] значение [math]\sum_{j \in U - \{h\}} T_{ijh}[/math] меньше ноля (это означает, что кластеризацию можно улучшить), то выполняется обмен [math]i[/math]-го медоида и [math]h[/math]-го объекта. В противном случае дальнейшее улучшение кластеризации с помощью обмена невозможно и алгоритм завершает свою работу.


В результате работы алгоритма множество [math]S[/math] будет содержать ровно [math]K[/math] объектов – медоидов. Как было сказано [math]j[/math]-й объект лежит в том же кластере, что и его медоид: [math]arg\min_{i \in S} d_{ij}[/math]

1.3 Вычислительное ядро алгоритма

Из математического описания алгоритма следует, что вычислительное ядро алгоритма сосредоточено в итерационной стадии SWAP. Одна итерация состоит в вычислении:

[math]arg\min_{i \in S, h \in U} \sum_{j \in U - \{h\}} T_{ijh}[/math]

Смысл этого выражения в том, что выполняется выбор такой пары медоида [math]i[/math] и объекта [math]h[/math] операция обмена которых приведёт к улучшению кластеризации или же делается вывод о невозможности такого обмена и работа алгоритма завершается.

1.4 Макроструктура алгоритма

Для описания значений [math]C_{ij}[/math] и [math]T_{ijh}[/math] и способа их вычисления введём следующие обозначения (в дополнение к обозначениям, введённым в математическом описании алгоритма):

  • [math]D_{i}[/math] – расстояние от [math]i[/math]-го объекта до его медоида
  • [math]E_{i}[/math] – расстояние от [math]i[/math]-го объекта до второго ближайшего к нем медоида

Очевидно, что для любых объектов верно неравенство [math]D_{i} \lt = E_{i}[/math]. Отметим также, что значения [math]D_{i}[/math] и [math]E_{i}[/math] могут меняться при изменениях в множествах [math]U[/math] и [math]S[/math], следовательно они должны пересчитываться после добавления нового медоида или выполнения операции обмена.


Значение [math]C_{ij}[/math] представляет собой число, на которое уменьшается значение [math]D_{j}[/math] в результате выбора [math]i[/math]-го объекта в качестве медоида. Очевидно, что данное значение всегда неотрицательно. Для вычисления [math]C_{ij}[/math] следует рассмотреть два случая. В первом случае, когда [math]D_{j} \lt = d_{ij}[/math], величина [math]D_{j}[/math] не изменится, т.к. ближайший к [math]j[/math]-му объекту медоид останется на том же расстоянии от него, следовательно будет справедливо равенство [math]C_{ij} = 0[/math]. В втором случае, когда [math]D_{j} \gt d_{ij}[/math], ближайшим к [math]j[/math]-му объекту медоидом станет новый выбранный медоид ([math]i[/math]-ый объект), следовательно будет справедливо равенство [math]C_{ij} = D_{j} - d_{ij}[/math].

Вычисление значения [math]C_{ij}[/math]


Значение [math]T_{ijh}[/math] представляет собой число, которое добавляется к значению [math]D_{j}[/math] в результате выполнения операции обмена [math]i[/math]-го медоида и [math]h[/math]-го объекта. Для вычисления [math]C_{ij}[/math] следует рассмотреть два случая. В первом случае, когда [math]D_{j} = d_{ij}[/math] ([math]i[/math]-й объект является медоидом [math]j[/math]-го объекта) может быть два варианта: [math]E_{j} \lt = d_{jh}[/math] (медоидом [math]j[/math]-го объекта станет второго ближайший к нему медоид), тогда справедливо равенство [math]T_{ijh} = E_{j} - D_{j}[/math] и [math]E_{j} \gt d_{jh}[/math] (медоидом [math]j[/math]-го объекта станет [math]h[/math]-й объект), тогда справедливо равенство [math]T_{ijh} = d_{jh} - D_{j}[/math]. Во втором случае, когда [math]D_{j} != d_{ij}[/math] ([math]i[/math]-й объект НЕ является медоидом [math]j[/math]-го объекта) также может быть два варианта: [math]D_{j} \lt = d_{jh}[/math] (медоид [math]j[/math]-го объекта не изменится), тогда справедливо равенство [math]T_{ijh} = 0[/math] и [math]D_{j} \gt d_{jh}[/math] (медоидом [math]j[/math]-го объекта станет [math]h[/math]-й объект), тогда справедливо равенство [math]T_{ijh} = d_{jh} - D_{j}[/math]. Таким образом, в первом случае ([math]i[/math]-й объект является медоидом [math]j[/math]-го объекта) значение [math]T_{ijh}[/math] может быть вычислено по формуле [math]T_{ijh} = min(E_{j}, d_{jh}) - D_{j}[/math], а во втором ([math]i[/math]-й объект НЕ является медоидом [math]j[/math]-го объекта) – по формуле [math]T_{ijh} = min(d_{jh} - D_{j}, 0)[/math].

Вычисление значения [math]T_{ijh}[/math]

1.5 Схема реализации последовательного алгоритма

В соответствии с приведённым выше математическим описанием последовательное выполнение алгоритма представляет собой выполнение стадии BUILD, а затем последовательное повторение итераций стадии SWAP до тех пор пока существует пара объектов (один из которых медоид, а другой – нет), которые можно обменять, чтобы улучшить кластер.

1.6 Последовательная сложность алгоритма

При описании последовательной сложности будем считать, что выполняется распределение [math]N[/math] объектов по [math]K[/math] кластерам. В соответствии с приведённым математическим описанием алгоритм включает в себя подготовительную стадию BUILD и итерационную стадию SWAP.

Стадия BUILD сводится к вычислению:

Одной операции [math]arg\min_{i} \sum_{j} d_{ij}[/math]
[math]K-1[/math] операций [math]arg\max_{i \in U} \sum_{j \in U - \{i\}} C_{ij}[/math]

Т.е. стадия BUILD требует:

[math]K * N^2[/math] операций сложения
[math]K * N[/math] операций сравнения (определения максимума/минимума)
Около [math]K * N^2[/math] вычислений [math]C_{ij}[/math]

Одна итерация стадии SWAP сводится к вычислению:

[math]arg\min_{i \in S, h \in U} \sum_{j \in U - \{h\}} T_{ijh}[/math]

Т.е. одна итерации стадии SWAP требует порядка:

[math]K * N^2[/math] операций сложения
[math]K * N[/math] операций сравнения (определения максимума/минимума)
[math]K * (N - K) * (N - K - 1)[/math] вычислений [math]T_{ijh}[/math]

Вычисления [math]C_{ij}[/math] и [math]T_{ijh}[/math] имеют константную сложность для любых [math]i[/math], [math]j[/math] и [math]h[/math], поэтому сложность одной итерации алгоритма определяется как [math]O(K * N^2)[/math]. Таким образом можно отнести алгоритм PAM к алгоритмам с кубической сложностью.

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные:

1. Матрица расстояния (в смысле непохожести) между объектами кластеризации (dissimilarity matrix) [math]D[/math] (элементы [math]d_{ij}[/math]).
Дополнительные ограничения:
   [math]D[/math] – симметрическая матрица порядка [math]N[/math], т.е. [math]d_{ij}= d_{ji}, i, j = 1, \ldots, N[/math]
   [math]D[/math] – содержит нули на главной диагонали, т.е. [math]d_{ii}= 0, i = 1, \ldots, N[/math]
2. [math]K[/math] - число кластеров, на которое следует разбить объекты кластеризации

Объём входных данных:

[math]\frac{N (N - 1)}{2}[/math] (в силу симметричности и нулевой главной диагонали достаточно хранить только  над/поддиагональные элементы). В разных реализациях эта экономия хранения может быть выполнена разным образом. 

Выходные данные:

[math]N[/math] чисел [math]k_{1}, k_{2}, \ldots, k_{N}[/math], где [math]k_{i}[/math] - целое число, соответствующее кластеру [math]i[/math]-го объекта.
Выходными данными алгоритма также можно считать [math]K[/math] чисел, задающих номера объектов кластеризации, выделенных в качестве медоидов (medoids). Однако в большинстве случаев требуется именно определение кластеров объектов, а не поиск соответствующих медоидов.

Объём выходных данных:

[math]N[/math] (кластеры объектов кластеризации)

1.10 Свойства алгоритма

Ограничения: небольшой объем данных. Достоинства: простота использования; быстрота использования; понятность и прозрачность алгоритма, алгоритм менее чувствителен к выбросам в сравнении с k-means. Недостатки: необходимо задавать количество кластеров; медленная работа на больших базах данных.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

PAM работает эффективно для небольших наборов данных, но не очень хорошо масштабируется для больших наборов данных

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература