Householder (reflections) method for the QR decomposition of a matrix
Метод Хаусхолдера (в советской математической литературе чаще называется методом отражений) используется для разложения матриц в виде [math]A=QR[/math] ([math]Q[/math] - унитарная, [math]R[/math] — правая треугольная матрица)[1]. При этом матрица [math]Q[/math] хранится и используется не в своём явном виде, а в виде произведения матриц отражения[2].
A reflection (or a Householder) matrix is a matrix of the form [math]U=E-2ww^*[/math], where the vector [math]w[/math] is normalized: [math]w^{*}w=1[/math]. Such a matrix is unitary ([math]U^{*}U=E[/math]) and Hermitian ([math]U^{*}=U[/math]) at the same time; consequently, this matrix is its own inverse ([math]U^{-1}=U[/math]).
Кроме классического точечного варианта, метод имеет много других, например, блочный.