Участник:Dmarkin/Алгоритм кластеризации, основанный на минимальном покрывающем дереве

Материал из Алговики
Перейти к навигации Перейти к поиску
Symbol wait.svgЭта работа прошла предварительную проверку
Дата последней правки страницы:
08.02.2017
Данная работа соответствует формальным критериям.
Проверено ASA.


Автор описания: Маркин Дмитрий Валерьевич, группа 611

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Кластеризация (или кластерный анализ) — это задача разбиения множества объектов на группы, называемые кластерами. Внутри каждой группы должны оказаться «похожие» объекты, а объекты разных группы должны быть как можно более отличны.

Алгоритм кластеризации на [math]K[/math] кластеров, основанный на построении минимального остовного дерева ([math]MST[/math]):

  1. По исходным данным строится граф. Каждый объект представляется в виде вершины графа, каждые две вершины соединяются ребром. Вычисляется вес ребра при помощи выбранной метрики (например, евклидовой);
  2. Для полученного графа строится минимальное остовное дерево при помощи одного из алгоритмов (наиболее распространены: Алгоритм Крускала, Алгоритм Борувки, Алгоритм Прима)
  3. Удаляется [math]K-1[/math] ребро минимального остовного дерева с максимальным весом и получаются k компонент связности.

1.2 Математическое описание алгоритма

Имеем [math]N[/math] объектов [math]x[/math], которые представляют собой элемент метрического пространства с метрикой [math]d(x_i,x_j)=\sqrt{\sum^{n}_{k=1} {(x_{ik}-x_{jk})^2}}[/math].

На первом шаге строим граф [math]G=(V,E)[/math] с множеством вершин [math]V[/math] ([math]|V|=N[/math]) и множеством ребер [math]E[/math] ([math]|E|=\frac{N*(N-1)} {2}[/math]).

На втором этапе строится минимальное покрывающее дерево [math]MST(G)[/math].

На третьем этапе удаляется [math]K-1[/math] ребро, и дерево распадается на поддеревья [math]MST_i[/math], вершины которых объявляются принадлежащими кластеру с номером [math]i[/math].

1.3 Вычислительное ядро алгоритма

Алгоритм состоит из трёх независимых шагов:

  1. Построение графа и вычисление расстояний. Сложность [math]O(N^2)[/math];
  2. Построение минимального покрывающего дерева при помощи одного из наиболее распространенных методов ( Алгоритм Крускала, Алгоритм Борувки, Алгоритм Прима). Сложность [math] O(N^2 \log N) [/math];
  3. Разбиение на кластеры. Сложность в худшем случае [math]O(N)[/math].

Отсюда следует, что вычислительным ядром алгоритма является этап построения минимального покрывающего дерева, поскольку он имеет наибольшую сложность.

1.4 Макроструктура алгоритма

Макроструктура алгоритма описана в пункте 1.3. Отметим основные макрооперации, которые входят в состав алгоритма:

  • Вычисление расстояний между вершинами;
  • Добавление ребра в граф;
  • Нахождение минимального покрывающего дерева, что является вычислительным ядром алогоритма;
  • Удаление ребра из графа.

1.5 Схема реализации последовательного алгоритма

1.5.1 Обозначения

  • [math]D(i) [/math] — расстояние от [math]i[/math]-й вершины до построенного дерева;
  • [math]P(i) [/math] — предок [math]i[/math]-й вершины, то есть такая вершина [math]u[/math], что [math](u,i)[/math] легчайшее из всех рёбер, соединяющее [math]i[/math] с вершиной из построенного дерева;
  • [math]W(i,j)[/math] — вес ребра [math](i,j)[/math];
  • [math]Q[/math] — приоритетная очередь вершин графа, где ключ — [math]D(i)[/math];
  • [math]T[/math] — множество ребер минимального остовного дерева.

1.5.2 Псевдокод

[math]T \gets  [/math] {}     //множество ребер минимального остовного дерева объявляется пустым
Для каждой вершины  [math] i \in V [/math] 
 [math]D(i) \gets \infty [/math]     //расстояние до построенного дерева объявляется максимальным
 [math]P(i) \gets nil[/math]     //вершина не имеет предков из построенного дерева
[math]D(1) \gets 0[/math]     //включаем вершину с номером 1 в дерево
[math]Q \gets V[/math]     //записываем в очередь множество всех вершин
Пока [math]Q [/math] не пуста
 [math]v \gets\ Extract.min(Q) [/math]     //извлекаем из очереди вершину с минимальным расстоянием до построенного дерева 
 Для каждой вершины [math]u[/math] смежной с [math]v[/math]
  Если [math]u \in Q[/math] и [math]W(v,u) \lt  D(u)[/math]
   [math]D(u) \gets W(v,u)[/math]
   [math]P(u) \gets v[/math]
 [math]v \gets Extract.Min(Q)[/math]
 [math]T \gets T+(P(v),v)[/math]     //добавляем выбранное ребро в дерево

1.6 Последовательная сложность алгоритма

Последовательная сложность определяется суммой сложностей трёх основных этапов:

[math]T(N) = O(N^2) + O(N^2 \log N) + O(N) = O(N^2 \log N)[/math]

1.7 Информационный граф

Информационный граф параллельного алгоритма построения минимального покрывающего дерева

1.8 Ресурс параллелизма алгоритма

Рассмотрим основные свойства задачи:

  • Схлопывание фрагментов. Пусть [math]F[/math] – фрагмент минимального остовного дерева графа [math]G[/math], а граф [math]G'[/math] получен из [math]G[/math] склеиванием вершин, принадлежащих [math]F[/math]. Тогда объединение [math]F[/math] и минимального остовного дерева графа [math]G'[/math] даёт минимальное остовное дерево исходного графа [math]G[/math].
  • Ассоциативность по рёбрам. Пусть [math]MSF(E)[/math] – минимальный остовный лес графа с рёбрами [math]E[/math]. Тогда:[math] MSF(E_1 \cup E_2 \cup \dots \cup E_k) = MSF(MSF(E_1) \cup MSF(E_2) \cup \dots \cup MSF(E_k)). [/math]
  • Минимальное ребро фрагмента. Пусть [math]F[/math] – фрагмент минимального остовного дерева и [math]e_F[/math] – ребро наименьшего веса, исходящее из [math]F[/math] (т.е. ровно один его конец является вершиной из [math]F[/math]). Если ребро [math]e_F[/math] единственно, то оно принадлежит минимальному остовному дереву. На этом свойстве основаны алгоритм Борувки и алгоритм Прима.

Ресурс параллелизма основан на следующих возможностях:

  1. Свойства схлопывания фрагментов и минимального ребра фрагмента позволяют обрабатывать фрагменты независимо. Основанный на этих свойствах алгоритм Борувки обладает наибольшим ресурсом параллелизма среди трёх классических алгоритмов.
  2. Ассоциативность по рёбрам может быть использована для параллелизации алгоритмов Крускала и Прима, которые изначально являются существенно последовательными.
  3. Использование параллельных алгоритмов сортировки рёбер графа, либо параллельная сортировка рёбер у каждой вершины или у каждого фрагмента.

Существуют распределённые алгоритмы построения минимального покрывающего дерева, имеющие асимптотическую параллельную сложность [math]O(N \log N)[/math]. Например, Алгоритм GHS (Gallager, Humblet, Spira) является распределённым вариантом алгоритма Борувки. Последующие версии этого алгоритма имеют более низкую параллельную сложность.

1.9 Входные и выходные данные алгоритма

Входные данные: множество объектов [math]x = (x_1,...,x_N)[/math]. Объём [math]O(N)[/math].

Выходные данные: множество кластеров [math]Clust = (Clust_1,...,Clust_K)[/math], где [math]Clust_i = (x_{i,1},..., x_{i, N_i}), x_{i, l} \ne x_{j, m}, i \ne j, \forall l[/math] и [math]m, \sum_{i=1}^K {N_i} = N [/math]. Объём [math]O(N)[/math].

1.10 Свойства алгоритма

  • Алгоритм останавливается за конечное число шагов, поскольку на каждом шаге становится по крайней мере на один фрагмент меньше.
  • Число фрагментов на каждом шаге уменьшается как минимум вдвое, так что общее число шагов составляет не более [math]\log_2 N[/math].
  • Соотношение последовательной и параллельной сложности: [math] \frac{N^2 \log N} {N \log N} = N [/math].
  • Вычислительная мощность: [math] \frac {N^2 \log N} {N} = N \log N[/math].
  • Алгоритм детерминирован. Если случается, что имеются два ребра [math](x_i,x_j)[/math] и [math](x_l,x_m)[/math], такие что [math]d(x_i,x_j) = d(x_l,x_m)[/math], то алгоритм должен выбрать ребро, одна из вершин которого имеет минимальный индекс [math]\min(i,j,l,m)[/math], если эти два ребра выходят из одной вершины, индекс которой является минимальным (например, [math]i=l[/math] ), то выбирается ребро, вершина которого имеет наименьший индекс из двух других вершин [math]\min(j,m)[/math].

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

Масштабируемость алгоритма Прима исследована на параллельной версии, представленной в книге. При помощи директив OpenMP алгоритм распараллеливался по ядрам. В данном источнике представлены результаты экспериментов при использовании 2 и 4 вычислительных ядер и изменении объёма входных данных от 100 до 1000. Эксперименты проводились на двухпроцессорном вычислительном узле на базе четырехядерных процессоров Intel Xeon E5320, 1.86 ГГц, 4 Гб RAM под управлением операционной системы Microsoft Windows HPC Server 2008. Разработка программ проводилась в среде Microsoft Visual Studio 2008, для компиляции использовался Intel C++ Compiler 10.0 for Windows.

Результаты вычислительных экспериментов для параллельного алгоритма Прима (при использовании двух и четырех вычислительных ядер)

Из графика видно, что время выполнения увеличивается при увеличении объёма входных данных, но уменьшается при увеличении вычислительных ядер.

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. - СПб.: БХВ-Петербург, 2002. - 608 с.
  2. Нейский И.М. Классификация и сравнение методов кластеризации
  3. C. Kingsford. Minimum Spanning Trees & Clustering
  4. Y. Zhou et al. Clustering with Minimum Spanning Trees
  5. Gallager, Robert G, P A Humblet, and P M Spira. “A Distributed Algorithm for Minimum-Weight Spanning Trees.” ACM Transactions on Programming Languages and Systems 5, no. 1 (1983): 66–77. doi:10.1145/357195.357200.
  6. Gafni, Eli. “Improvements in the Time Complexity of Two Message-Optimal Election Algorithms,” 175–85, New York, New York, USA: ACM Press, 1985. doi:10.1145/323596.323612.
  7. Awerbuch, B. “Optimal Distributed Algorithms for Minimum Weight Spanning Tree, Counting, Leader Election, and Related Problems,” 230–40, New York, New York, USA: ACM Press, 1987. doi:10.1145/28395.28421.
  8. Гергель В.П. Высокопроизводительные вычисления для многоядерных многопроцессорных систем