Уровень реализации

Cholesky decomposition, scalability

Материал из Алговики
Перейти к навигации Перейти к поиску


Основные авторы описания: А.М.Теплов (раздел 3).

1 Ссылки

Исследованная параллельная реализация на языке C.

2 Локальность данных и вычислений

2.1 Локальность реализации алгоритма

2.1.1 Структура обращений в память и качественная оценка локальности

2.1.2 Количественная оценка локальности

3 Масштабируемость алгоритма и его реализации

3.1 Масштабируемость алгоритма

3.2 Масштабируемость реализации алгоритма

Исследование проводилось на суперкомпьютере "Ломоносов"[1] Суперкомпьютерного комплекса Московского университета.

Проведём исследование масштабируемости параллельной реализации разложения Холецкого согласно методике.

Набор и границы значений изменяемых параметров запуска реализации алгоритма:

  • число процессоров [4 : 256] с шагом 4;
  • размер матрицы [1024 : 5120].

В результате проведённых экспериментов был получен следующий диапазон эффективности реализации алгоритма:

  • минимальная эффективность реализации 0,11%;
  • максимальная эффективность реализации 2,65%.

На следующих рисунках приведены графики производительности и эффективности выбранной реализации разложения Холецкого в зависимости от изменяемых параметров запуска.

Рисунок 1. Параллельная реализация метода Холецкого. Изменение производительности в зависимости от числа процессоров и размера матрицы.
Рисунок 2. Параллельная реализация метода Холецкого. Изменение эффективности в зависимости от числа процессоров и размера матрицы.

Построим оценки масштабируемости выбранной реализации разложения Холецкого:

  • По числу процессов: -0,000593. При увеличении числа процессов эффективность на рассмотренной области изменений параметров запуска уменьшается, однако в целом уменьшение не очень быстрое. Малая интенсивность изменения объясняется крайне низкой общей эффективностью работы приложения с максимумом в 2,65%, и значение эффективности на рассмотренной области значений быстро доходит до десятых долей процента. Это свидетельствует о том, что на большей части области значений нет интенсивного снижения эффективности. Это объясняется также тем, что с ростом вычислительной сложности падение эффективности становится не таким быстрым. Уменьшение эффективности на рассмотренной области работы параллельной программы объясняется быстрым ростом накладных расходов на организацию параллельного выполнения. С ростом вычислительной сложности задачи эффективность снижается так же быстро, но при больших значениях числа процессов. Это подтверждает предположение о том, что накладные расходы начинают сильно превалировать над вычислениями.
  • По размеру задачи: 0,06017. При увеличении размера задачи эффективность возрастает. Эффективность возрастает тем быстрее, чем большее число процессов используется для выполнения. Это подтверждает предположение о том, что размер задачи сильно влияет на эффективность выполнения приложения. Оценка показывает, что с ростом размера задачи эффективность на рассмотренной области значений параметров запуска сильно увеличивается. Также, учитывая разницу максимальной и минимальной эффективности в 2,5%, можно сделать вывод, что рост эффективности при увеличении размера задачи наблюдается на большей части рассмотренной области значений.
  • По двум направлениям: 0,000403. При рассмотрении увеличения как вычислительной сложности, так и числа процессов на всей рассмотренной области значений эффективность увеличивается, однако скорость увеличения эффективности небольшая. В совокупности с тем фактом, что разница между максимальной и минимальной эффективностью на рассмотренной области значений параметров небольшая, эффективность с увеличением масштабов возрастает, но медленно и с небольшими перепадами.

4 Динамические характеристики и эффективность реализации алгоритма

5 Результаты прогонов

6 Литература

  1. Воеводин Вл., Жуматий С., Соболев С., Антонов А., Брызгалов П., Никитенко Д., Стефанов К., Воеводин Вад. Практика суперкомпьютера «Ломоносов» // Открытые системы, 2012, N 7, С. 36-39.