Уровень реализации

Single-qubit transform of a state vector, locality

Материал из Алговики
Перейти к навигации Перейти к поиску


Основные авторы описания: Вад.В.Воеводин (раздел 2).

1 Ссылки

Основной фрагмент реализации, на основе которого были получены количественные оценки, приведен здесь (функция Kernel).

2 Локальность данных и вычислений

К сожалению, в противовес идеальной возможности параллелизации алгоритма, практические реализации обладают очень плохой локальностью.

Из математического описания и информационных графов для разных параметров q можно заметить, что при однократном применении однокубитного преобразования легко получить идеальную локальность обращения к данным простой перестановкой кубитов. Так, переместив кубит q на последнее место, мы получим взаимодействие лишь соседних по памяти элементов, причем в идеальном последовательном доступе.

Однако, преобразование одного кубита в прикладных задачах является лишь подпрограммой и применяется многократно с различными параметрами q. Как видно из математического описания и Рис. 1-2, это полностью исключает возможность добиться локальности обращений к данным.

2.1 Локальность реализации алгоритма

2.1.1 Структура обращений в память и качественная оценка локальности

Рисунок 1. Однокубитное преобразование вектора-состояния. Общий профиль обращений в память

На рис. 1 представлен профиль обращений в память для вычисления однокубитного преобразования вектора-состояния. Данный профиль состоит из обращений к трем массивам, фрагменты для отдельных массивов выделены на рис. 1 зеленым цветом. Из общего профиля можно увидеть, что обращения редко используются повторно, по крайней мере в случае фрагментов 2 и 3. При этом обращения к близко расположенным друг к другу данным выполняются рядом. Рассмотрим выделенные фрагменты поближе.

Отдельно фрагмент 1 представлен на рис. 2. Видно, что данный массив состоит всего из 4-х элементов, к которым постоянно выполняются обращения. Такой фрагмент обладает очень высокой локальностью, поскольку постоянно используются ранее запрошенные данные.

Далее, рассмотрим фрагмент 2 (рис. 3). Здесь все еще проще – выполняется обычный последовательный перебор всех элементов массива. Такой фрагмент обладает высокой пространственной локальностью, однако очень низкой временной (данные не используются повторно).

Рисунок 2. Фрагмент 1 (профиль обращений к первому массиву)
Рисунок 3. Фрагмент 2 (профиль обращений ко второму массиву)

Наиболее интересным представляется фрагмент 3. Его небольшой фрагмент, выделенный на рис. 1 желтым, представлен на рис. 4. Однако при ближайшем рассмотрении оказывается, что данный фрагмент тоже просто устроен, хотя и немного сложнее предыдущих.

В данном случае также виден в центре последовательный перебор всех элементов массива, параллельно с которым выполняются обращения либо к элементам с большим или меньшим виртуальным адресом. Отметим, однако, что эта разница между виртуальными адресами, судя по всему, больше 64 байт (длины строки), что может служить причиной возникновения большого числа кэш-промахов.

Рисунок 4. Небольшая часть фрагмента 3, выделенная на рис. 1 желтым

В общем можно сказать, что общий профиль обращений в память обладает достаточно высокой пространственной локальностью, поскольку большинство обращений образуют последовательные переборы элементов массивов, однако временная локальность низка – данные практически не используются повторно.

2.1.2 Количественная оценка локальности

Условия запуска описаны здесь.

Первая оценка выполняется на основе характеристики daps, которая оценивает число выполненных обращений (чтений и записей) в память в секунду. Данная характеристика является аналогом оценки flops применительно к работе с памятью и является в большей степени оценкой производительности взаимодействия с памятью, чем оценкой локальности. Однако она служит хорошим источником информации, в том числе для сравнения с результатами по следующей характеристике cvg.

На рисунке 5 приведены значения daps для реализаций распространенных алгоритмов, отсортированные по возрастанию (чем больше daps, тем в общем случае выше производительность). Можно увидеть, что производительность работы с памятью для этой программы высока – значение daps примерно на уровне теста Linpack. Видимо, низкая временная локальность в данном случае компенсируется высокой пространственной локальностью.

Рисунок 5. Сравнение значений оценки daps

Вторая характеристика – cvg – предназначена для получения более машинно-независимой оценки локальности. Она определяет, насколько часто в программе необходимо подтягивать данные в кэш-память. Соответственно, чем меньше значение cvg, тем реже это нужно делать, тем лучше локальность.

На рисунке 6 приведены значения cvg для того же набора реализаций, отсортированные по убыванию (чем меньше cvg, тем в общем случае выше локальность). Можно увидеть, что, в отличие от daps, cvg оценивает локальность данной программы как достаточно низкую. В частности, значение cvg для Linpack заметно меньше, в то время как значения daps практически совпадали.

Одна из возможных причин этого – влияние арифметических операций. Может получиться, что данные из памяти не будут запрашиваться, пока арифметические операции не будут выполнены; это приводит к простою подсистемы памяти. Соответственно, если в одной программе таких операций нет, а в другой - есть, то daps в первом случае будет выше. При этом cvg не поменяется, поскольку эта оценка не зависит от времени выполнения.

В данном случае арифметических операций практически нет (в отличие от некоторых других программ), поэтому daps может показывать более высокие результаты, в то время как cvg показывает достаточно низкую оценку.

Рисунок 6. Сравнение значений оценки cvg

3 Масштабируемость алгоритма и его реализации

3.1 Масштабируемость алгоритма

3.2 Масштабируемость реализации алгоритма

4 Динамические характеристики и эффективность реализации алгоритма

5 Результаты прогонов