Участник:Илья Егоров/Алгоритм k-средних: различия между версиями
Zhum (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
− | |||
{{algorithm | {{algorithm |
Версия 11:16, 16 ноября 2016
Алгоритм k-средних (k-means) | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n*k*d)[/math] |
Объём входных данных | [math]n*d[/math] |
Объём выходных данных | [math]n[/math] |
Страница создана группой "Илья Егоров — Евгений Богомазов".
Оба автора в равной мере участвовали в написании, обсуждении и оформлении содержимого статьи. Допустимо считать вклад каждого равным 50%.
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ. Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм кластеризации k-средних впервые был предложен в 1950-х годах математиками Гуго Штейнгаузом и Стюартом Ллойдом независимо друг от друга. Наибольшую популярность он получил после работы Маккуина.
Алгоритм позволяет при заданном числе [math]k[/math] построить [math]k[/math] кластеров, расположенных на максимальном расстоянии друг от друга. Таким образом, наибольшей точности результат выполнения алгоритма достигает при полной осведомленности Пользователя о характере кластеризуемых объектов и, как следствие, при обладании максимально корректной информацией о числе кластеров.
В общем случае выбор числа [math]k[/math] может базироваться на любых значимых факторах, в том числе на результатах предшествующих исследований, теоретических соображениях или интуиции.
1.2 Математическое описание алгоритма
Исходные данные:
- Совокупность n d-мерных векторов [math] X = \{x_1 \dots x_n\} , [/math] где [math] x_i = \{x_{i1} \dots x_{id}\} [/math]
- Предполагаемое количество кластеров k
Выходные данные:
- Разбиение X на множество [math] S = \{S_1 \dots S_k \}, \bigcup S_i = X, S_i \cap S_j = \emptyset, i \neq j [/math]
- k центров кластеров [math] \Mu = \{\mu_1 \dots \mu_k \} [/math], где [math] \mu_i = \{\mu_{i1} \dots \mu_{id} \} [/math] такие, что
[math] \begin{cases}\tilde{\mu_i} = \underset{y}{argmin } \sum_{x \in S_i} ||x-y||^2_E \\ \Mu = \underset{\tilde{\Mu}}{argmin } \sum_{i \in k} \sum_{x \in S_i} ||x-\tilde{\mu_i}||^2_E \end{cases} [/math]
Алгоритм:
1) [math] \mu_{i} = random [/math]
2) [math] S_i = \{x \in S~|~\underset{j}{argmin } ||x-\mu_j||_E = i\} i = 1 \dots k [/math]
3) [math] \tilde{\mu_{i}} = E_{x \in S_i}(x) [/math]
4) Если для [math] \forall i: \mu_i = \tilde{\mu_i} [/math] то алгоритм завершен, иначе [math] \mu_i = \tilde{\mu_i} [/math] и перейти на пункт 2)
1.3 Вычислительное ядро алгоритма
Вычислительным ядром алгоритма является второй этап, а точнее нахождение матрицы расстояний между [math]X[/math] и [math]\Mu[/math]. Для d-мерного вектора [math]a:[/math]
[math]||a||=\sqrt{\sum_{i=1\dots d} a_i^2}[/math], поэтому заполнение одной ячейки такой матрицы потребует [math]d[/math] операций умножения, [math]d-1[/math] операций сложения и одну операция вычисления квадратного корня. Но так как эти расстояния используются только для сравнения, а sqrt является монотонно возрастающей функцией, то ее можно не вычислять. Поэтому нахождения матрицы расстояний потребует всего [math]n*k*d[/math] операций умножений и [math]n*k*(d-1)[/math] операций сложений.
1.4 Макроструктура алгоритма
В алгоритме можно выделить следующие макрооперации:
- Вычисление расстояния между векторами,
- Суммирование векторов,
- Поиск минимума в векторе,
- Сравнение векторов,
- Деление вектора на скаляр.
1) На шаге инициализации центроидов в общем случае (случайный выбор элементов) макроопераций не производится. Но так как правило определения количества кластеров k неоднозначно, то для некоторых вариантов макрооперации могут понадобиться. К примеру, существует класс стратегий поиска k, которые базируются на определении центра масс всех объектов, и для которых будут дополнительно выполняться макрооперации "Суммирование векторов" и "Деление вектора на скаляр".
2a) При составлении матрицы расстояний k [math] \cdot [/math] n раз производится макрооперация "Вычисление расстояния между векторами".
2b) При нахождение вектора распределения объектов по кластерам n раз производится макрооперация "Поиск минимума в векторе".
3) При пересчете центроидов n - k раз производится макрооперация "Суммирование векторов" и k раз - "Деление вектора на скаляр".
4) Для проверки критерия останова требуется k раз произвести макрооперацию "Сравнение векторов" для сопоставления обновленных значений центроидов с уже имеющимися.
1.5 Схема реализации последовательного алгоритма
Последовательность шагов алгоритма следующая:
1) Инициализация центроидов [math]\Mu[/math], [math] iter = 1 [/math], задание максимального количество итераций [math]maxiter[/math] 2a) Нахождение матрицы расстояний [math]dist:[/math] [math]dist_{ij} = \sum_{l = 1\dots d} (x_{il}-\mu_{jl})^2[/math] 2b) Нахождение вектора распределения объектов по кластерам [math]index: [/math] [math]index_{i} = \underset{j}{argmin }~dist_{ij} [/math] 3) Пересчет центроидов [math]\tilde{\Mu}:[/math] [math]\tilde{\mu_{ij}} = \sum_{l \in S_i} \dfrac{x_{lj}}{|S_i|} [/math], где [math]S_i = \{l~|~l \in 1\dots n, index_l = i\} [/math] 4) Проверка критерия останова: Если [math] \exists i: \tilde{\mu_i} \neq \mu_i[/math], [math] iter \lt maxiter [/math], то [math] inc(iter), \Mu=\tilde{\Mu},[/math] GOTO 2.а.
1.6 Последовательная сложность алгоритма
1) Сложность инициализации в общем случае зависит от применяемого метода генерации/получения случайных чисел, но ей можно пренебречь 2a) Вычисление матрицы расстояний требует [math] n*k*d [/math] операций умножения и [math] n*k*(d-1) [/math] операций сложения 2b) Нахождение вектора распределения требует [math] n*(k-1) [/math] операций сравнения 3) Для вычисления [math] \tilde{\Mu} [/math] требуется [math] (n - k + 1) * d [/math] операций сложения и [math] k * d [/math] операций деления 4) Для критерия останова требуется [math] n*d [/math] сравнений
Итого: так как максимальное количество итераций задается в алгоритме заранее и не зависит от входных данных, то количество итераций ограничено константой. Тогда сложность алгоритма:
- [math] O(n*k*d)[/math] операций сложения/вычитания
- [math] O(n*k*d)[/math] операций умножения, [math] O(k*d) [/math] операций деления
1.7 Информационный граф
Рассмотрим вычислительные этапы алгоритма k-means. Это распределение объектов по кластерам и перерасчет центроидов.
Распределение объектов по кластерам состоит из нахождения матрицы расстояний между [math]X[/math] и [math]\Mu[/math] (этапа 2a)) и нахождения индекса минимального элемента в каждой строке (этап 2b)). Ниже приведен информационный граф данного этапа.
Рассмотрим этап вычисления ячейки [math] dist_{ij} [/math] матрицы более подробно. Он представляет из себя скалярное произведение d-мерных векторов [math] x_i [/math] и [math] \mu_j [/math]. Ниже приведена граф для данной операции.
На этапе 3) происходит суммирование всех [math] x_l [/math] с одинаковым значением индекса в промежуточные суммы. Одновременно происходит подсчет количество элементов с фиксированным индексом. Затем происходит деление промежуточных сумм на соответствующее количество элементов в новом кластере, благодаря чему удается получить обновленные центроиды [math] \tilde{\mu}[/math]
1.8 Ресурс параллелизма алгоритма
Для получения общей картины достаточно определить, в том числе и с помощью информационного графа, каким ресурсом параллелизма обладает каждый из этапов алгоритма:
2a) Нахождение каждой ячейки матрицы [math] dist [/math] может происходить полностью независимо, так как они находятся на одном ярусе. При рассмотрении операции вычисления значения конкретной ячейки [math] dist_{ij} [/math] можно заметить, что все операции умножения также независимы между собой, поэтому понадобится всего одно умножение. Конечный результат получается в результате суммирования всех слагаемых и достигается параллельно за [math] \log(d) [/math] бинарных операций сложения при помощи стандартного метода reduction.
2b) Нахождение вектора распределений заключается в нахождении минимального элемента в каждой строке матрицы [math] dist [/math]. При использовании reduction эту операцию можно выполнить за [math] \log(k) [/math] бинарных операций сравнения.
3) В случае, если существует методология быстрого разделения n объектов на k множеств при помощи вектора индексации (косвенной адресации), все [math] \tilde{S_i} [/math] могут быть обработаны параллельно. В рамках каждого отдельного [math] \tilde{S_i} [/math] можно проводить распараллеливание дальше, так как [math] x_{lj} [/math] также не зависят друг от друга. Таким образом, вычисление всех слагаемых для всех [math] \tilde{\mu_{ij}} [/math] может быть выполнено за одно параллельное деление, а нахождение суммы всех этих слагаемых для каждого [math] \tilde{\mu_{ij}} [/math] может быть выполнено за [math] O(log(n)) [/math] в худшем случае (при вхождении почти всех объектов в один кластер).
Если же такой методологии не существует, то узким местом становится процесс распределения на множества согласно вектору [math]index[/math], который можно выполнить за [math] n [/math] операций косвенных адресаций.
4) Все сравнения для критерия останова также независимы между собой и могут быть выполнены за одну операцию сравнения, а финальный результат может быть получен за одну операцию сложения при работе над общей памятью (к примеру, прибавление единицы при несовпадении в общую память и сравнение ее с 0 по завершению) или за [math]\log(k*d)[/math] сложений иначе.
Так как количество итераций ограничено константой, то на сложность оно не влияет. В итоге, параллельная сложность алгоритма k-means такова:
- [math] O(\log(n*d)) [/math] операций сложения
- [math] O(\log(k)) [/math] операций сравнения
- [math] O(1) [/math] операций умножения и деления
1.9 Входные и выходные данные алгоритма
Входные данные: Количество кластеров k, n кластеризуемых элементов
Дополнительные ограничения:
- k — положительное число, т. е. k > 0.
- Для кластеризуемых элементов определена метрика (расстояние между объектами)
Объём входных данных: n [math]\cdot[/math] d + 1 (кластеризуемые объекты в виде векторов и число k)
Выходные данные: Массив, в который записаны принадлежности каждого элемента кластеру (допустим вывод в другой эквивалентной более удобной структуре).
Объём выходных данных: Размер массива равен 2 [math]\cdot[/math] n.
1.10 Свойства алгоритма
Вычислительная мощность
Число действий: [math]n\cdot k\cdot d[/math] умножений
Объем входных данных: [math]n \cdot d + 1[/math]
Вычислительная мощность [math] = \dfrac{n \cdot k \cdot d}{n\cdot d + 1} = k[/math] операций на единицу переданных данных за одну итерацию.
Ограничения алгоритма
Алгоритм эффективно работает только на небольших объемах данных.
Преимущества алгоритма
- Простота использования
- Быстрота использования
- Понятность и прозрачность описания
- Обладает вычислительной устойчивостью
- Предрасположенность к распараллеливанию
- Достаточно популярный, поэтому имеет множество реализаций и вариаций
Недостатки алгоритма
- Нет проверки корректности выбора числа кластеров
- Алгоритм чувствителен к количеству кластеров
- Алгоритм чувствителен к выбору начальных элементов в качестве центроидов
- Алгоритм крайне чувствителен к выбросам по данным
- Медленная работа на больших объемах данных
2 ЧАСТЬ. Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации
Проведём исследование масштабируемости параллельной реализации алгоритма k-средних. Исследование проводилось на суперкомпьютере "Ломоносов" Суперкомпьютерного комплекса Московского университета.
Набор и границы значений изменяемых параметров запуска реализации алгоритма:
- число процессоров [1 : 16] с увеличением в 2 раза;
- размер данных [100000 : 1600000] с увеличением в 2 раза.
В результате проведённых экспериментов были получены следующие данные:
- Максимальная эффективность в точке достигается при переходе от 1 потока на 8 при минимальном размере данных, она равна [math]87,5%[/math].
- Усредненная максимальная эффективность достигается при переходе с одного потока на два. Среднее время вычислений на всех рассмотренных потока снижается с 16,33 до 11.87 секунд, поэтому формально эффективность [math]= 16.33 / 11.87 / 2 \approx 68,4\%[/math]
- Минимальная эффективность в точке достигается при переходе от 1 потока на 16 при размере данных 800000, она равна [math]11,1\%[/math].
- Усредненная минимальная эффективность наблюдается при переходе с одного на максимальное рассматриваемое в эксперименте число потоков, равное 16. Время вычисления изменяется с 16,33 до 7,6 секунд, поэтому формально эффективность [math] = 16.33 / 7.6 / 16 \approx 14,9\%[/math]
Ниже приведены графики зависимости вычислительного времени алгоритма и его эффективности от изменяемых параметров запуска -- размера данных и числа процессоров:
Оценка масштабируемости:
По числу процессов - при увеличении числа процессов эффективность уменьшается на всей области рассматриваемых значений, причем темп убывания замедляется с ростом числа процессов.
По размеру задачи - при увеличении размера задачи эффективность вычислений вначале кратковременно возрастает, но затем начинает относительно равномерно убывать на всей рассматриваемой области.
По двум направлениям - при увеличении как размера данных, так и числа процессов по всей рассмотренной области значений эффективность продолжает убывать.
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
2.7.1 Бесплатный доступ
Десктопные программы
Фреймворки для языков
- Python:
- C++:
- C#:
- Java:
- Lua
Языки R и Julia содержат алгоритм k-means в базовой реализации.
2.7.2 Платный доступ/лицензия
Существует целый перечень мощных статистических и математических пакетов для разных ОС:
3 Литература
[1] Нейский И.М. Классификация и сравнение методов кластеризации http://it-claim.ru/Persons/Neyskiy/Article2_Neiskiy.pdf