Участник:Илья Егоров/Алгоритм k-средних

Материал из Алговики
Перейти к навигации Перейти к поиску

Здесь будет описание алгоритма k-средних

Страница создана группой "Илья Егоров -- Евгений Богомазов"

1 ЧАСТЬ. Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм кластеризации k-средних был предложен в 1950-х годах математиками Гуго Штейнгаузом и Стюартом Ллойдом независимо друг от друга, а наибольшую популярность получил после работы Маккуина. Алгоритм позволяет при заданном числе k построить k кластеров, расположенных на максимальном расстоянии друг от друга. Таким образом, наибольшей точности алгоритм достигает при полной осведомленности о характере кластеризуемых объектов и, как следствие, при обладании максимально корректной информации о числе кластеров. В общем случае выбор числа k может базироваться на любых значимых факторах, в том числе на результатах предшествующих исследований, теоретических соображениях или интуиции.

1.2 Математическое описание алгоритма

Исходные данные: [math]\begin{itemize}\item\{a_i\}, i = 1 \dots n\end{itemize}[/math]--множество объектов, подлежащих кластеризации, k -- предполагаемое количество кластеров

Вычисляемые данные: центр предполагаемого кластера -- центр масс элементов кластера.

[math]\sum^n_{i=1}[/math]

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 ЧАСТЬ. Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

[1] Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. - СПб.: БХВ-Петербург, 2002. - 608 с.

[2] Воеводин В.В., Воеводин Вад.В. Спасительная локальность суперкомпьютеров //Открытые системы. - 2013. - № 9. - С. 12-15.

[3] Воеводин Вад.В., Швец П. Метод покрытий для оценки локальности использования данных в программах // Вестник УГАТУ. — 2014. — Т. 18, № 1(62). — С. 224–229.

[4] Антонов А.С., Теплов А.М. О практической сложности понятия масштабируемости параллельных программ// Высокопроизводительные параллельные вычисления на кластерных системах (HPC 2014): Материалы XIV Международной конференции -Пермь: Издательство ПНИПУ, 2014. С. 20-27.

[5] Никитенко Д.А. Комплексный анализ производительности суперкомпьютерных систем, основанный на данных системного мониторинга // Вычислительные методы и программирование. 2014. 15. 85–97.