Участник:Илья Егоров/Алгоритм k-средних
Алгоритм k-средних (k-means) | |
Последовательный алгоритм | |
Последовательная сложность | [math]O()[/math] |
Объём входных данных | [math]\frac{()}{}[/math] |
Объём выходных данных | [math]\frac{ ()}{}[/math] |
Страница создана группой "Илья Егоров — Евгений Богомазов"
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ. Программная реализация алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм кластеризации k-средних впервые был предложен в 1950-х годах математиками Гуго Штейнгаузом и Стюартом Ллойдом независимо друг от друга. Наибольшую популярность он получил после работы Маккуина.
Алгоритм позволяет при заданном числе [math]k[/math] построить [math]k[/math] кластеров, расположенных на максимальном расстоянии друг от друга. Таким образом, наибольшей точности результат выполнения алгоритма достигает при полной осведомленности Пользователя о характере кластеризуемых объектов и, как следствие, при обладании максимально корректной информацией о числе кластеров.
В общем случае выбор числа [math]k[/math] может базироваться на любых значимых факторах, в том числе на результатах предшествующих исследований, теоретических соображениях или интуиции.
1.2 Математическое описание алгоритма
Исходные данные:
- Совокупность n d-мерных векторов [math] X = \{x_1 \dots x_n\} , [/math] где [math] x_i = \{x_{i1} \dots x_{id}\} [/math]
- Предполагаемое количество кластеров k
Выходные данные:
- Разбиение X на множество [math] S = \{S_1 \dots S_k \}, \bigcup S_i = X, S_i \cap S_j = \emptyset, i \neq j [/math]
- k центров кластеров [math] \Mu = \{\mu_1 \dots \mu_k \} [/math], где [math] \mu_i = \{\mu_{i1} \dots \mu_{id} \} [/math] такие, что
[math] \begin{cases}\mu_i = argmin_y \sum_{x \in S_i} ||x-y||^2_E \\ \mu_i = argmin_\Mu \sum_{i \in k} \sum_{x \in S_i} ||x-\mu_i||^2_E \end{cases} [/math]
Алгоритм:
1) [math] \mu_{ij} = random [/math]
2) [math] S_i = \{x| argmin_j ||x-\mu_j|| = i\} i = 1 \dots k [/math]
3) [math] \tilde{\mu_{i}} = E_{x \in S_i}(x) [/math]
4) Если для [math] \forall i: \mu_i = \tilde{\mu_i} [/math] то алгоритм завершен, иначе [math] \mu_i = \tilde{\mu_i} [/math] и перейти на пункт 2)
1.3 Вычислительное ядро алгоритма
Вычислительным ядром алгоритма является второй этап, а точнее нахождение матрицы расстояний между [math]X[/math] и [math]\Mu[/math]. Для d-мерного вектора [math]a:[/math]
[math]||a||=\sqrt{\sum_{i=1\dots d} a_i^2}[/math], поэтому заполнение одной ячейки такой матрицы потребует [math]d[/math] операций умножения, [math]d-1[/math] операций сложения и одну операция вычисления квадратного корня. Но так как эти расстояния используются только для сравнения, а sqrt является монотонно возрастающей функцией, то ее можно не вычислять. Поэтому нахождения матрицы расстояний потребует всего [math]n*k*d[/math] операций умножений и [math]n*k*(d-1)[/math] операций сложений.
1.4 Макроструктура алгоритма
Алгоритм k-средних базируется на алгоритме вычисления расстояния между векторами, расстояние на каждом шаге высчитывается [math]k\cdot n[/math] раз.
Помимо этого, в конце каждого шага вычисляется центр масс объектов кластера, для всех объектов потребуется [math]n-1[/math] суммирование и [math]k[/math] делений.
1.5 Схема реализации последовательного алгоритма
Последовательность шагов алгоритма следующая:
1. Шаг инициализации По какому-либо правилу выбираем [math]k[/math] объектов для кластеризации, объявляем их центроидами 2. Шаг классификации Классифицируем каждый объект на предмет принадлежности к кластеру: [math]a_i \in P \Leftrightarrow \left|a_i - s_P\right| \rightarrow \min_P[/math] 3. Шаг перерасчета центроидов Вычисляем центр масс каждого из кластеров. 3.а Если для какого-либо кластера его центр масс отличается от центроида, то * переносим центроид этого кластера во вновь образованный центр масс, * проделываем эту операцию для всех других кластеров * переходим к Шагу 2 3.б Если для каждого кластера его центр масс совпадает с центроидом, то Выход из алгоритма, объекты классифицированы.
Альтернатива
Последовательность шагов алгоритма следующая:
1) Инициализация центроидов [math]\Mu[/math], [math] iter = 1 [/math], задание максимального количество итераций [math]maxiter[/math] 2a) Нахождение матрицы расстояний [math]dist: dist_{ij} = \sum_{l = 1\dots d} (x_{il}-\mu_{il})^2[/math] 2b) Нахождение вектора распределения объектов по кластерам [math]index: index_{i} = argmin_{j} dist_{ij} [/math] 3) Пересчет центроидов [math]\tilde{\Mu}: \tilde{\mu_{ij}} = \sum_{l \in T_i} x_{lj}/|T_i| [/math], где [math]T_i = \{l| l \in 1\dots n, index_l = i\} [/math] 4) Проверка критерия останова: если [math] \exists i: \tilde{\mu_i} \neq \mu_i[/math] и [math] iter \lt maxiter [/math], то [math] inc(iter), \Mu=\tilde{\Mu}[/math], goto 2a
Альтернатива альтернативы
1. Инициализация центроидов [math]\Mu[/math], [math] iter = 1 [/math], задание максимального количество итераций [math]maxiter[/math] 2.а. Нахождение матрицы расстояний [math]dist:[/math] [math]dist_{ij} = \sum_{l = 1\dots d} (x_{il}-\mu_{il})^2[/math] 2.б. Нахождение вектора распределения объектов по кластерам [math]index: [/math] [math]index_{i} = \underset{j}{argmin } dist_{ij} [/math] 3. Пересчет центроидов [math]\tilde{\Mu}:[/math] [math]\tilde{\mu_{ij}} = \sum_{l \in T_i} x_{lj}/|T_i| [/math], где [math]T_i = \{l| l \in 1\dots n, index_l = i\} [/math] 4. Проверка критерия останова: Если [math] \exists i: \tilde{\mu_i} \neq \mu_i[/math], [math] iter \lt maxiter [/math], то [math] inc(iter), \Mu=\tilde{\Mu},[/math] GOTO 2.а.
1.6 Последовательная сложность алгоритма
1) Сложность инициализации в общем случае зависит от применяемого метода генерации/получения случайных чисел, но ей можно пренебречь 2a) Вычисление матрицы расстояний требует [math] n*k*d [/math] операций умножений и [math] n*k*(d-1) [/math] операций сложений 2b) Нахождение вектора распределения требует [math] n*(k-1) [/math] операций сравнений 3) Для вычисления [math] \tilde{\Mu} [/math] требуется [math] (n - k + 1) * d [/math] операций сложений и [math] k * d [/math] операций деления 4) Для критерия останова требуется [math] n*d [/math] сравнений
Итого: так как максимальное количество итераций задается в алгоритме заранее и не зависит от входных данных, то количество итераций ограничено константой. Тогда сложность алгоритма:
- [math] O(n*k*d)[/math] операций сложений/вычитаний
- [math] O(n*k*d)[/math] операций умножений, [math] O(k*d) [/math] операций делений
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входные данные: Количество кластеров k, n кластеризуемых элементов
Дополнительные ограничения:
- k — положительное число, т. е. k > 0.
- Для кластеризуемых элементов определена метрика (расстояние между объектами)
Объём входных данных: n [math]\cdot[/math] d + 1 (кластеризуемые объекты в виде векторов и число k)
Выходные данные: Массив, в который записаны принадлежности каждого элемента кластеру (допустим вывод в другой эквивалентной более удобной структуре).
Объём выходных данных: Размер массива равен 2 [math]\cdot[/math] n.
1.10 Свойства алгоритма
Вычислительная мощность алгоритма на каждом шаге равна [math]k\cdot n[/math] (расстояние между элементом и центроидом [math]k\cdot n[/math] раз)
2 ЧАСТЬ. Программная реализация алгоритма
2.1 Масштабируемость алгоритма и его реализации
2.2 Существующие реализации алгоритма
3 Литература
[1] Нейский И.М. Классификация и сравнение методов кластеризации http://it-claim.ru/Persons/Neyskiy/Article2_Neiskiy.pdf